

FOR SDN

Shaowen Ma, APAC Product Director, Juniper, mashao@juniper.net

March 1, 2017

AGENDA

Introduction

Segment Routing Deep Dive

Segment Routing SDN and Use Case

Summary

MPLS – 16 YEARS, GREAT SUCCESS THE ACTUAL STANDARD FOR SERVICE DELIVERY

- LDP, mLDP
- RSVP-TE, RSVP-TE P2MP
- L3 MPLS VPN
- 6VPE/6PE
- L2 MPLS VPN VPWS
- L2 MPLS VPN VPLS (LDP, BGP, BGP AD)
- Next-generation multicast VPN
- MPLS-OAM, LSP BFD, VCCV Ping, and VCCV-BFD
- MPLS-TP Static LSP/PW, OAM, APS
- GMPLS, GMPLS UNI*

Kireeti Kompella

Eric Rosen

Yakov Rekhter

Many...

IETF SPRING/Segment Routing working group

Source Packet Routing in Networking

SDN 2.0 ERA

Segment Routing, RSVP-TE Enable SDN 2.0 Edge Intelligence, Stateless CORE

AGENDA

Introduction

Segment Routing Deep Dive

Segment Routing SDN and Use Case

Summary

Segment Routing Introduction Source Based Routing

draft-ietf-isis-segment-routing-extensions-xx

- Idea from Draft-Kompella(Label Block and Index)
- Network represented by Segment
 - Adj, Nodal Segment(unique #, one segment)
 - Segments act as topological sub-paths that can be combined together to form the desired path.
 - Source Routing: the source chooses a path and encodes it in the packet header as an ordered list of segments
- Every Node Forwarding table only take care portion of network
 - All nodal segment, SRGB(SR Global Block)
 - Adj Segment, No neighbors Adj Segment, Local Significant
- CSPF for nodal Segment
 - Calculate the OIF only,
 - label keep same(64-5000 reserved)

protocols { isis {
 source-packet-routing { node-segment ipv4-index 11}}

2

Segment Routing Architecture

Step2: Controller calculate/program Label stacks from Edge

Controller have the whole picture
Node will only need Adj/Node segment forwarding

Adj/Nodal Segment forwarding

Nodal/Adj Label space is different, No Recursive look up.

- Node Advertise Adj label, IGP extension
- Only install Adj label on router, not aware of rest network.
- Push multiple labels stack to reach remote router
- POP label only

Node advertise, unique {64-5000}

Swap Label Only

IGP extension, normal SPF for all loopback

Nodal label keep same in every nodes

Packet injected anywhere

Path Creation

Source Based Routing

- A. Follow the IGP
 - one label pushed, the nodal segment(Node-SID),
 - SPF can leverage the ECMP path
 - Example, {114}
- B. Explicit Via nodal (like loose node in RSVP-TE)
 - Push list of via nodal...
 - Between nodal, SPF load balance.
 - Easy to expended across Area/AS
 - Example, {112,114}
- C. Explicit via Adj, any path
 - Push of list of Via Adj
 - Example, {5001,5002,5003,5004,114}
- D. Mixed Path with Adj/Nodal

ANYCAST SEGMENT ID FOR NODE REDUNDANCY

Anycast SID

- A group of Nodes share the same SID
- Work as a "Single" router, single Label

Any Topology

- Hub/Spoke
- Ring Topology
- Anycast and other nodes follow IGP

Application

- ABR Protection
- Seamless MPLS
- ASBR inter-AS protection

TI-FRR/TI-LFA

SEGMENT ROUTING CAN GUARANTEE 100%

- IP-based FRR not guaranteed in any topology
- Directed LFA (DLFA) is guaranteed when metrics only cover few cases, extra computation (RLFA) also 90%+ topology
- TI-FRR, Target LDP session with RSVP Tunnel
- TI-LFA Segment Routing, 2 actions
 - node segment to P node(From E1, can reach C1 without via failure link.
 - adjacency segment from P to Q Node(From Q node can reach C1 without via failure Link)
 - TI-LFA 100% Guarantee

Binding SID in Multi-Area SR, Larger network w/ Label stacks Advertising LSPs from other protocols into SPRING

SRV6 STANDARDIZATION

- IETF is in the process of standardizing SRv6
 - Draft-ietf-6man-segment-routing-header-01
 - Work in Progress
- Two modes of operation
 - Insertion mode
 - SR ingress router inserts an SRH between IPv6 header and IPv6 payload
 - SR egress router optionally removes the SRH
 - Prepending mode
 - SR ingress router prepends a new IPv6 header and an SRH to the original IPv6 header
 - SR egress router always removes the new IPv6 header and the SRH, leaving only the original IPv6 header

Segment Routing IPv6(Animated)

include a SRH, Insertion mode and Prepending mode

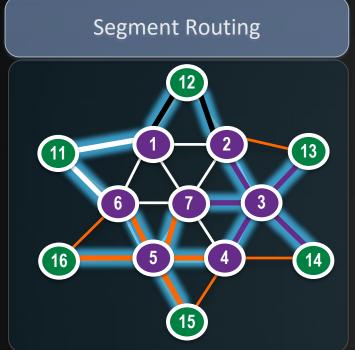
■Draft-ietf-6man-segment-routing-header-01

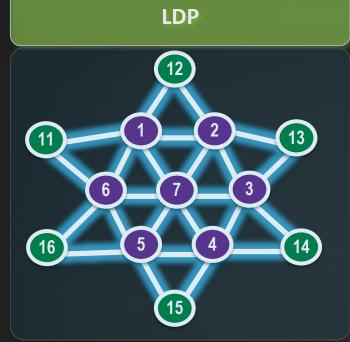
Ver	DSCF	•	Flow Label		
Length			Hop Limit		
Source Address 2001:db8:0:1::1					
Destination Address 2001:db8:0:1::6					
Next HDR TCP		L	ength56	HDR Type 4	Seg Left
First Seg 2		III	Flags C = 1		Reserved
Segment 0 2001:db8:0:1::6					
Segment 1					
2001:db8:0:1::5					
Segment 2					
2001:db8:0:1::4					

IPv6 HEADER

Segrmender Routing Header

TCP Header


SEGMENT ROUTING SDN WORK GREAT WITH SDN &PCEP



- The network is simple, highly programmable and responsive to rapid changes
- Source Based routing, label pushed in the source will decide the path.
- On router, PCE Client no need signaling protocol to create path, Just Segment Routing.
- Better than PCE+RSVP-TE, No on-demand signaling the path.
- Better than Static MPLS label push from SDN, SR still have ECMP, Resilience, FRR.

Segment Routing vs LDP/RSVP

Keep the network Status Simple, Build the network topology

Adj Prefix Loopback

Segment Routing

- Only keep minimal status in network
- Keep all loopbacks
- With only adj prefix
- One SPF for all nodal ID.

LDP

- Keep all Loopbacks
- Adj Prefix and non-adj prefix

RSVP

- Keep all Loopbacks
- Potential full mesh LSP, and middle node keeps a lot of transit information per LSP.
- Per LSP CSPF caculation
- Known as not so scale protocol.

Segment Routing vs MPLS

Features	MPLS	Segment Routing
Control Protocol	LDP/RSVP/BGP(any of label allocation) OSPF/ISIS, BGP (any of topology), SDN	OSPF or ISIS or BGP, or SDN Controller
Traffic Engineer	RSVP, PCE Client, SDN	OSPF/ISIS(option) SDN (option)
Fast Reroute	LDP FRR, or RSVP-TE FRR	Build in FRR, cover for all scenario
Inter-Area/Inter-AS	With help of BGP label, or RSVP-TE inter Area hard to protect	Loose Node ID extension
Source Path Routing	No, IGP only	Yes, explicit indicate ingress
Scalabilities	LDP same as IGPRSVP limited.	Node + ADJ Segment(less entry) Best Scale
Performance Measurement	NO	Build in with RFC 6374
SDN integration	PCE, RSVP-TE	PCE, BGP-LU, SR

SEGMENT ROUTING FOR CLOUD DEPLOYMENT UNDERLAY PATH BY SR PROTOCOL, OVERLAY SDN CONTROLLER WITH LABEL APP

AGENDA

Introduction

Segment Routing Deep Dive

Segment Routing SDN and Use Case

Summary

SPRING: DOMAIN APPLICABILITY

	Data Center	Fixed design, EBGP as IGP, Simpler mgmt. with common SRGB
	WAN	Alternate way of doing FRR, No core state, BGP-LS to export topology to controller
	Metro	FRR in Metro rings, PW transport
华	Edge	Traffic engineering, Northbound interface: PCEP, BGP-LU, Flow-spec

PCE WITH SEGMENT ROUTING

PCEP SR similar with RSVP-TE PCEP

- Open message negotiate SR-PCE-CAPABILITY TLV
- PCCreate LSP with SR-ERO for Label stack
- No Need Signaling on PE-P-PE
- LSP State report with SR-RRO

BGP-LS get the network information

- TEDB information with label send back to Controller
- draft-gredler-idr-bgp-ls-segment-routing-ext-xx.txt

Service mapping by

Openflow/PBR/QPPB/BGP FlowSpec

PCE-initiated LSP: draft-ietf-pce-segment-routing-07

BGP FlowSpec redirect to SR LSP Tunnel

Туре	Matching	Туре	Matching
Type 1	Destination prefix	Type 7	ICMP type
Type 2	Source prefix	Type 8	ICMP code
Type 3	IP protocol	Type 9	TCP flag
	Port (Defines a list of pairs that matches source or destination UDP/TCP ports)		Packet length
Type 5	Destination port	Type 11	DSCP
Type 6	Source port	Type 12	Fragment


Туре	Extended Community	Encoding
0x8006	Traffic-rate	2 byte/4 byte float
0x8007	Traffic-Action	bitmask
0x8008	Redirection	6-bye route-target
0x8009	Traffic-marking	DSCP Value

NOTE: Detailed information about each type and filed can be found in RFC 5575 section#4 "Dissemination of Information".

Segment Routing with PCEP and BGP-LS

- Prefix & node SID learning via ISIS &/or BGP-LS
- New PCEP capability, ERO subobject and TLVs
 - ✓ draft-ietf-pce-segment-routing-06
- SPRING-TE LSP creation, visualization & optimization

BGP-LU WITH SEGMENT ROUTING

draft-rosen-idr-rfc3107bis-00.txt NOT draft-ietf-idr-bgp-prefix-sid-03

- BGP-LU Session between Controller/Router
 - BGP LU carrier the label stack for SR/LSP
 - BGP-LU carrier the Label stack for LSP + VPN Service
- BGP-LS get the network information
 - TEDB information with label send back to Controller
 - draft-gredler-idr-bgp-ls-segment-routing-ext-xx.txt
- BGP is the only protocol for Service and Tunnel
 - QPPB/BGP FlowSpec
 - With additional Openflow/PBR

Example from ExaBGP

MPLS IN DATA CENTERS

- Overlays are widely used today
 - South → North: Egress Peer Engineering (EPE)
 - North → South: Load balancing, Floating IPs, ...
 - East ↔ West: Multi Tenancy
- Currently overlays are IP-based, moving to MPLS
 - Consistent end-to-end protocol; avoid 'impedance-mismatch' at boundaries
 - Hierarchical Forwarding [MPLS Label Stack]; reduces FIB state
- Use SPRING-like approach
 - Label stacking (hierarchy) to reduce FIB size on switches with merchant silicon
 - Label stacking for 'source-routing' across WAN
 - Different control plane inside data-center: BGP instead of IGP

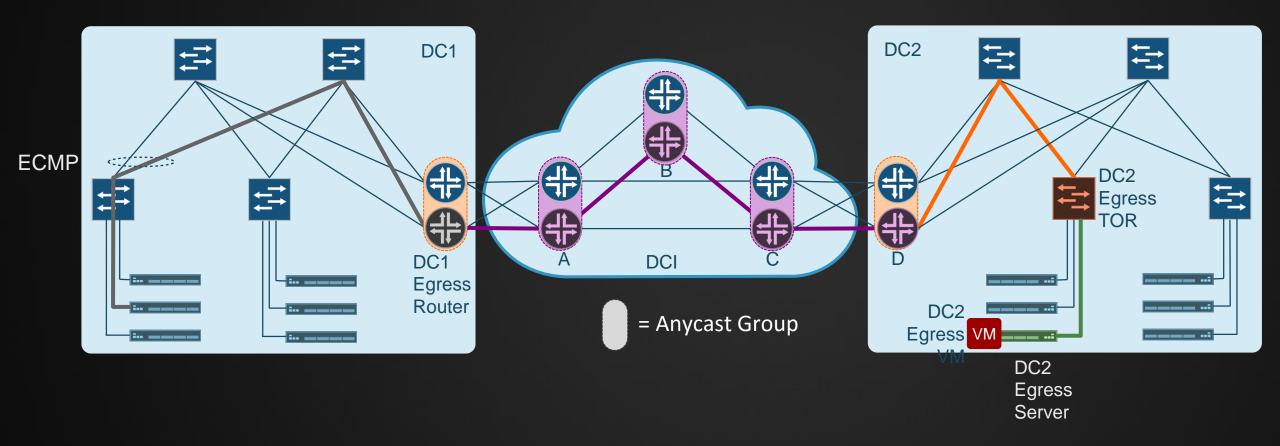
SPRING INTRA DATA CENTER ROUTING

SPRING INTRA DATA CENTER ROUTING

BGP-LU PREFIX SEGMENT PROPOSAL

Juniper Proposal [draft-gredler-idr-bgplu-prefix-sid-00]

SPRING INTER DATA CENTER ROUTING



Payload

MPLS label DC2 Egress VM MPLS label DC2 Egress server MPLS label DC2 Egress TOR

MPLS label stack DCI path: A, B, C, D

MPLS label DC1 Egress Router

SPRING INTER-DOMAIN CLOUD TRAFFIC ENGINEER

Easy to optimize End-To-End Traffic for SP Owned Network. How to optimize VIP Customer for Internet/Cloud connection?

BGP EPE DESIGN PHILOSOPHY

How to Select Which Peer to send

- Controller/RR may morning the BGP Peer Link
- Controller/RR find a tunnel from Ingress to ASBR
- Controller/RR based on certain rules to select ASBR

How ASBR identify a Peer

- Per Peer /32 address per label
- Install the MPLS Label POP for every Peer
- When ASBR received different label and send traffic to specific Peer

How Ingress mapping traffic to ASBR/Peer

Push

- Ingress push tunnel label to ASBR
- Ingress push BGP-LU label

BGP-LU EPE & MPLS KEY BENEFITS

EXTEND HOLLOW CORE/LSR TO PEERING, CHEAPER PEERING SOLUTION

SEGMENT ROUTING AND EPE USE CASE

SEGMENT ROUTING IN ACCESS/AGGREGATION SIMPLIFIED BOX FUNCTION, MOVE INTELLIGENCE TO CONTROLLER

SEAMLESS MPLS EVOLUTION – SEGMENT ROUTING

- Architect Change
 - To manage 1,000+ boxes Add SDN Controller
 - RSVP-TE w/ RFC3107 to Segment Routing
- Technical Benefits
 - SP Fabric management with ZTP
 - Better FRR with LFA/RLFA/TI-LFA
 - Better ABR Node protection with Segment Routing Anycast SID
 - Better tunnel provision by BGP-LU or Controller
 - Better Tunnel Stitching by SR, no need RFC3107, save one label
 - Service Provision by NETCONF
 - Network information collect by BGP-LS

4

SEGMENT ROUTING FOR NFV SERVICE CHAINING NO NEED NETWORK SERVICE HEADER(NSH), VNF SUPPORT MPLS

Services provided off-path by physical or virtual service nodes

Packets diverted through tunnels

- Return to forwarding path
 - By tunnel
 - Via forwarding
 - After attention by other service nodes

4

SEGMENT ROUTING FOR NFV SERVICE CHAINING NO NEED NETWORK SERVICE HEADER(NSH), VNF SUPPORT MPLS

VNF support MPLS label

TELCO CLOUD

WHAT IS THE TELCO CLOUD ARCHITECTURE? HIGH LEVEL ARCHITECTURE

5

Key Properties

- Physical distribution providing fungible cloud resources close to Telco consumer and business eyeballs.
- 2. Enables applications to have:
 - 1. Low Latency
 - 2. High Availability (through distribution)
 - 3. High volume of last mile throughput; minimizing network wide capacity growth (choke points)
- 3. Seamless Integration of DC and WAN technologies leveraging existing network and operational procedures.

TELCO CLOUD HIGH LEVEL REQUIREMENTS 10K FEET

- EVPN Signaling is a key requirement for *all* control plane signaling
 - EVPN-VPWS with flexible-cross-connect for all L2 pseudowires
 - EVPN-MPLS multi-point with IRB
 - EVPN-VXLAN for for IP fabrics

- Underlay transport is based on Segment Routing
 - No IGP in Telco Cloud. Only BGP-LU with prefix-SID extensions
 - Metro moves to OSPF-SR

STATIC SEGMENT ROUTING

Step1: Build the Segment Routing Topology, Single Hop LSP

6

STATIC SEGMENT ROUTING

Step2: Push the SR LSP from Edge

Lsp_51:
Dest = R1
Push
Out_label =
10100001
Nexthop = R4

Nexthop = R2

Adj_sid_23: in_label =1000001

Pop

Nexthop = R3

Adj_sid_21: In_label = 10100003 Pop Nexthop = R1 Adj_sid_34:

in_label =1000002

Pop

Nexthop = R4

Adj_sid_32: In_label = 10100002 Pop Nexthop = R2 Adj_sid_45:

in_label =1000003 Pop

Nexthop = R5

Lsp_41: In_label = 10100001 Swap Out_labels = 10100003, 10100002 Nexthop = R3

Ingress LSP with a stack of Adj-SID labels:

destJnxP = IpAddressAddrFormat("128.9.148.133")

dest = JnxBaseIpAddress(destJnxP)

lsp = RoutingStaticLspEntry()

lsp.name = "lsp_15"

lsp.type = 0 << ingress</pre>

lsp.Prefix = StaticLspEntryPrefix()

lsp.Prefix.destination = dest

lsp.label_operation = 0 << push</pre>

lsp.outgoing_labels = ["1000003","1000002","1000001"]

lsp.nexthop = "55.1.12.2"

lsp.preference = "6"

Isp.metric = "1"

addReq = RoutingStaticLspAddRequest(Isp)

addReply = staticLsp.StaticLspAdd(addReq)

print 'Reply status = ', addReply.status

OPENFLOW WITH SEGMENT ROUTING

ONF's **SPRING-OPEN**

- OpenFlow 1.3.4 can push 2 labels
 - Service label and Tunnel labels
 - Use Openflow group Chain to push multiple labels
- Openflow Build the Segment Routing Topo
 - Adj SID for POP
 - Node SID for continue(no change/no swap)
- No RSVP-TE/LDP and IGP on those routers
 - Only MPLS dataplane and Static configure from Openflow
- A lot of limitations BUT can show
 - Intelligence on Controller, very ugly CLI on Controller
 - White Label box with simple MPLS forwarding Plane
 - Demo in Dec 2014. https://goo.gl/ddeX5N

AGENDA

Introduction

Segment Routing Deep Dive

Segment Routing SDN and Use Case

Summary

Summary- Segment Routing Re-Invent MPLS

- Seamless work with SDN, BGP-LU/PCE-P Architecture. instantly tunnel setup. for next generation Application driven networks
- Work with NFV, such as Service Chaining
- Simplified MPLS Control Plane, OSPF/ISIS only. No need Signaling for tunnel setup. Tunnel path decided by ingress router.
 - source routing and hence explicit routing
- less status inside network element(router/switch)Topology based on Adj/Nodal information. Independent with Application Status
- 100% IP fast reroute protection, Fit for any topology
- Work great with Traffic Engineer and IPv6.. With QoS, OAM/SLA

Segment Routing Customers

Re-invent MPLS again! Foundation of NFV/SDN

- Major vendors claim to support, ALU/Cisco/Huawei/Juniper
- Known customer transforming to SPRING
 - AT&T CORD
 - Microsoft SWAN
 - China OTT, Tencent/Alibaba
 - Japan Softbank/NTT
 - ANZ Telstra etc

ROAD TO SELF DRIVEN NETWORK

Segment Routing Network

SUMMARY

- Segment Routing Design for SDN
- Segment Routing simplify Protocols
- Segment Routing enable better traffic engineer, IGP/BGP, Egress Peering Engineering
- Segment Routing Provide better FRR protection
- Segment Routing can be deployed in All Domains, DC, Metro, Access, Telco Cloud etc.

THANKYOU

O'REILLY"

MPLS in the SDN Era

INTEROPERABLE SCENARIOS TO MAKE NETWORKS SCALE TO NEW SERVICES

JUNIPER

Antonio Sánchez-Monge & Krzysztof Grzegorz Szarkowicz