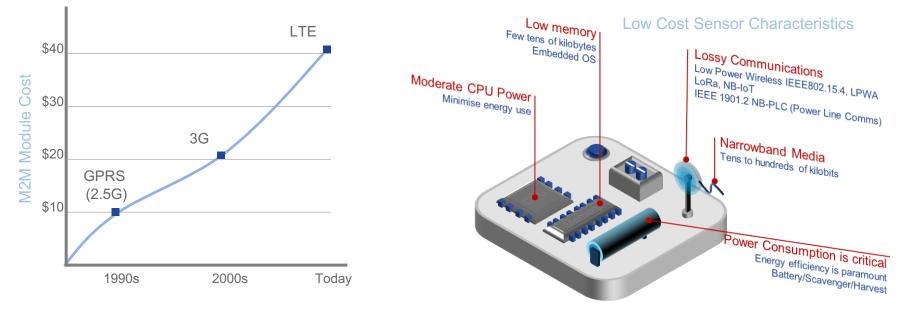


LPWA – Giving a Voice to Things


Jeff Apcar, Distinguished Services Engineer APRICOT 2017

Source: Cisco IBSG projections, UN Economic & Social Affairs http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf

3G/4G, WiFi Not Suitable For "Cheap" Things

Cellular networks generally connect expensive things In terms of energy available and data usage e.g., cars Bulk of existing cellular M2M use embedded GPRS modules

Examples Constrained "Cheap" Things

Fire Detection CO₂ Temp, Humidity, Infrared

Smart Parking Magnetic Field Sensor

Snow Depth UltraSound Sensor

River Levels Level sensor, Ultrasound

Street Lighting Light Sensors, Relays

Chemical Leakage PH Monitor, Oxygen levels

Urban Air Pollution

NO₂CO₂ Gas Sensors

LPWA

A new category of low cost network for low powered devices across a wide area

"The IoT contains devices that allow us to sense and control the physical world by making objects smarter and connecting them through an intelligent network"

Connecting a new generation smart objects/devices poses challenges: Pervasive connectivity, Power Availability and Low Cost

This requires a new generation of network to connect the low-powered things: Low Power Wide Area Networks

Low Power Wide Area Networks (LPWA)

What Is An LPWA?

Low Data Throughput

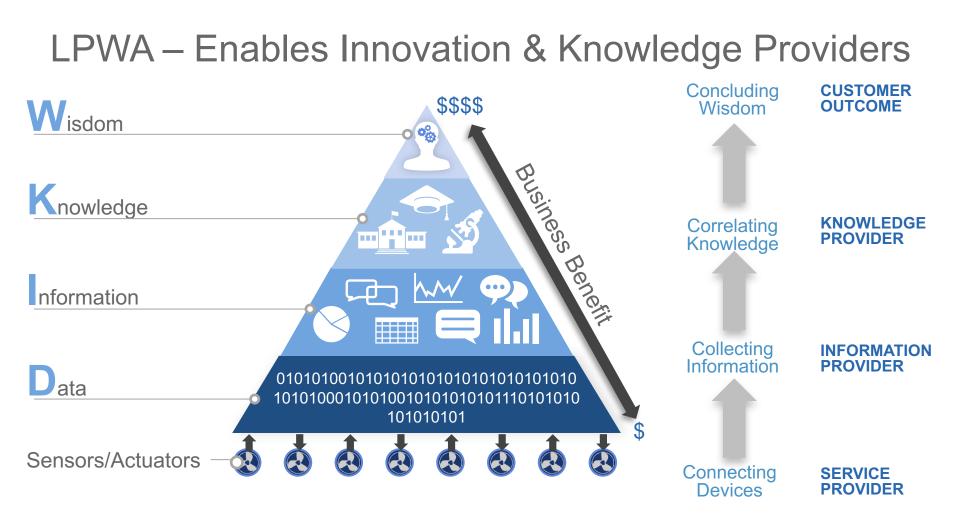
~200 Bytes per day, higher instantaneous Small packets (12 to 255 Bytes), mostly uplink traffic

Low Power

Devices last several years on battery

Long Range

0-5kms (dense urban), 10-65kms open area


Several LPWA technologies (Licensed vs Unlicensed Spectrum) LoRa, SIGFOX, Weightless, On-Ramp, NB-IoT, EC-GPRS, eMTC

Trend: Many SP Are Investigating LPWA

Innovative IoT Business Models require different networks

- How to connect millions of devices across a cityscape
- Connect wireless sensors
- Highly constrained devices
- Become Knowledge Provider Revenue Models?
 - Use Cases?
 - **Data Collection?**

Low Power Wide Area (LPWA) is an enabler

LPWA Device Characteristics & Typical Values

Spectrum Unlicensed/Licensed, < 1GHz

Range 10s Km, No Relay

Objects Many, 1000+

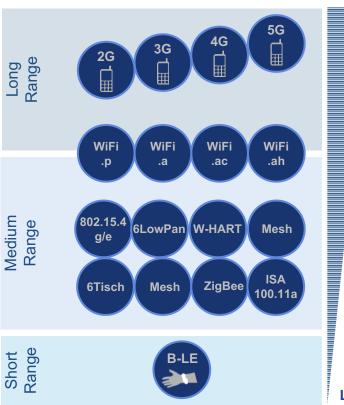
Data Volume Small, tens kB per day

Service Cost Low, < \$1-3 pm

Data Rate Low, <100kb/s

Latency Low-High, Up to minutes

Battery Life Long Life, Up to 10 years


Module Cost Low, < \$5

Installation Cost Low, < \$5-\$10

Current IoT Wireless vs LPWA

Low

High

Cost Licensed vs unlicensed Frequency bands, power requirements, Provisioning, i.e. SIM card

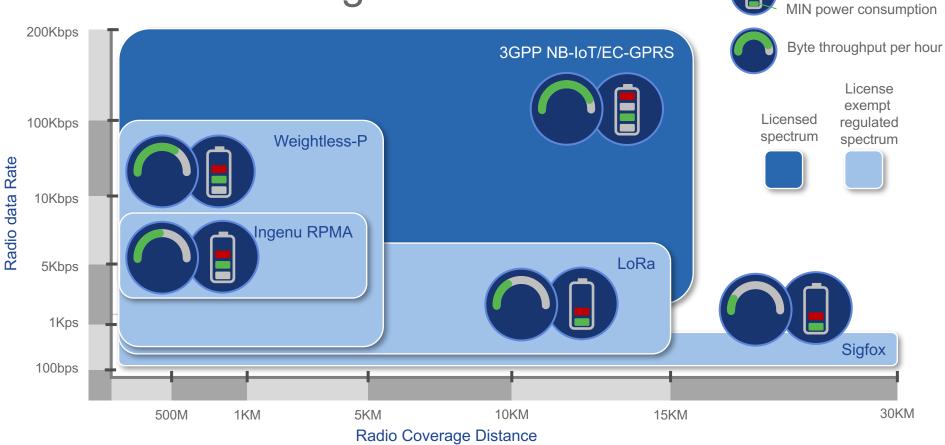
TX Power Standby Power Module Cost

Signal penetration GHz vs sub-GHz Frequency bands Bandwidth capacity

Use cases applicability Indoor vs Outdoor Mobile v Fixed

High

Broad Use Cases support


Utilities, Industrial (process and discrete manufacturing), Smart Cities (parking, environment,...), Range Agriculture and rural, Transportations, horizontal/consumers, Assets management

- Power consumption
- Massively scattered deployment
- Low data rate applications
- Open technology

Long

Eco-system for solution

LPWA Technologies

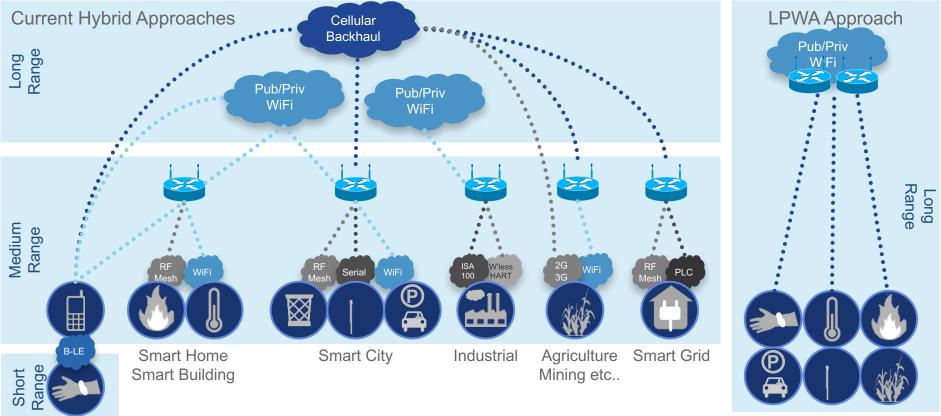
MAX power consumption

3GPP IoT Standards Licensed Spectrum

Bandwidth & **Power Consumption 3GPP LPWA Standards** Higher Same I TF air interface UE LTE MTC LTE-M/eMTC Compatible with existing infrastructure CAT-M1 (3GPP R12) (3GPP R13) Connected cars, telematics... (1.4Mhz) Creation of CAT-0 New air interface, Clean slate technology UE **NB-IOT** Uses LTE infrastructure (SGW/PGW) CAT-NB1 (3GPP R13) Power & parking meters, sensors... (200Khz) CloT Based on eGPRS **EC-GSM-IOT** Software upgrade Lower Smart metering, agricultural sensors... Cellular IoT Study Coexistence with GSM, UMTS, LTE

LPWA Use Cases

Some Approaches to Address LP Wireless


Technology	Topology	Outdoor	Use Case	Range
802.15.4g/6lowpan	Mesh	Yes	Smartgrid, Metering, Oil&Gas	Medium
WirelessHart	Mesh	No	Industrial	Short
Zigbee/ZigbeePro	Mesh	No	Smart Home/Building	Short
ISA100	Mesh	No	Industrial	Short
Proprietary 802.15.4	Point-to- Multipoint	Yes	Smart Parking, Traffic	Short
Enocean	Mesh	No	Building	Short
StarSense RF	Mesh	Yes	Smart Lighting	Short
Z-Wave	Mesh	No	Smart Home	Short

In most cases the technology is tailored to a narrow area/use case and indoor, with some attempts to support other use cases.

To cover a wide area a hybrid approach is required.

Hybrid LPWA: low power wireless short range and cellular/wire backhaul

Hybrid LPWA Approach

Multiple Services

LPWA Market Research

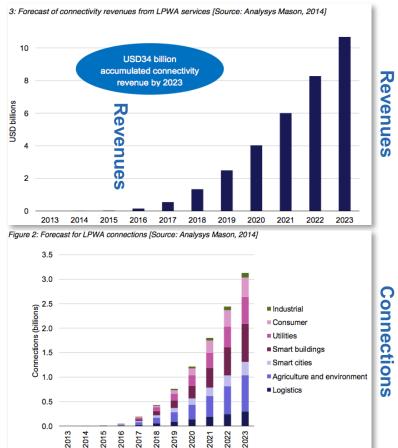
TAM - 2023

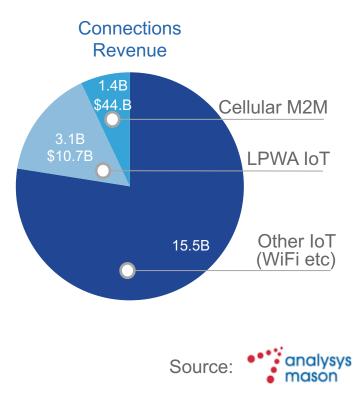
- Will reach 3 Billion Connections
- \$10B Connectivity Revenues
- \$10B in Device and Apps sales
- ??B in Knowledge Sales

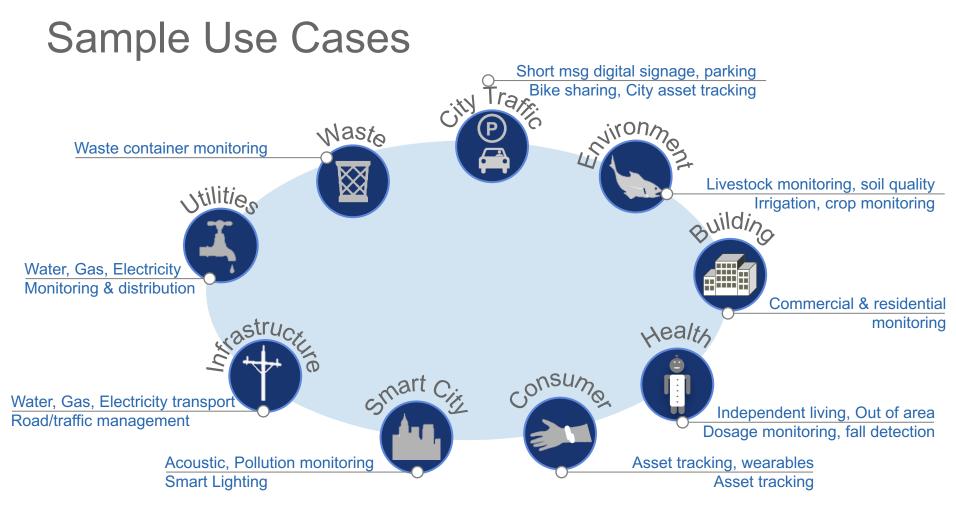
Complementary Technology

- Complements Cellular – only 4% overlap
- LPWA will create new market opportunities that can't be addressed with Cellular, LAN

Impacts Many Vertical Markets


- Suitable for any vertical with low power, low-bandwidth requirements
- Immediate use cases in Smart Cities, Utilities, Agriculture
- Many use cases to be discovered


Sustainable Business Models


- Low/Predictable lifetime costs help reduce barriers to adoption, drive market growth
- Bundling infrastructure to services to enable sustainable business

LPWA Connection TAM By 2023

LPWA Use Cases (Part 1)

Domain		Sub-domain	Use case
		Water & Gas distribution	Collect 3-4 times daily water and gas usage data
	Utilities	Water Network monitoring	Collect 3-4 times daily water flow, pressure data
		Electricity distribution	Collect daily or hourly electricity usage data
	Infrastructure Networks	Water & Gas transportation	Water and Gas infrastructure network surveillance (alarm, metering parameters)
++++		Electricity transportation	Electricity transport status monitoring and command/control
		Road / traffic management	Traffic light control, traffic level monitoring, emergency gate status control, digital signage status and updates
	Environment (City)	Acoustic Noise Monitoring	Collect data on Levels, location
		Humidity, Temperature	Collect data on humidity, temperature, rain, luminosity
		Air pollution monitoring and alerting	Collect data on different gas CO2, CO, NO, SO

LPWA Use Cases (Part 2)

Domain		Sub-domain	Use case
	City Traffic/Mobility	Parking	Collect data on parking sensors
		Traffic	Collect Data on traffic sensors
		Bike Sharing/Bike	Bike & rack availability, status monitoring, location
		City Asset tracking	Collect data on asset: e.g. manhole
		Digital Signage	Display short message on Digital Signage
	Waste Management	Waste Container monitoring	Collect data on waste containers: level, temperature
S	Consumer Services	Pet tracking	Monitor location of pets
		Personal asset tracking	Monitor location/usage of personal items
		Wearables	Collect data from wearables

LPWA Use Cases (3/3)

Do	omain	Sub-domain	Use case
		Soil quality monitoring	Acidity, humidity, nitrogen , landslide prevention,
		Livestock surveillance	Geolocation, health status, wolf prevention (accelerometer), geofencing, teleguidance
	Environment (Country side)	Cattle & pet monitoring	Geolocation
		Climate	Rain, wind, temperature, humidity, (pressure)
		Irrigation	Leakage
	Building	Residential	Fire detection, smoke, CO, flood, leakage, intrusion, temperature, home automation (blinds etc.)
	Management	Commercial	Fire detection, smoke, CO, flood, leakage, intrusion, temperature, building automation (blinds, heating, air conditioning etc), telesurveillance,
Ó	Hoolthoore	Patient monitoring	Fall down detection, out of area detection, ECG monitoring, activity monitoring, Alert
	Healthcare	Home Medical Equipment status and usage	Control of correct usage of medical equipment and status

LPWA Architecture

LPWA Architecture Value Proposition

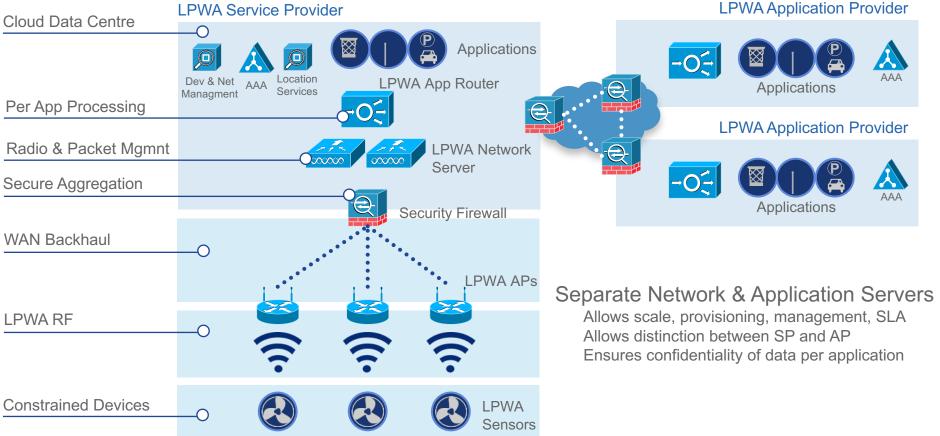
Low Power Wide Area IoT as a Service

Managed IoT using for example, LoRaWAN technology

Shift from CAPEX to OPEX

Low CAPEX deployment, Subscription based revenue model

Shift from HW to SW


All intelligence is in the Cloud implemented in software

Application Centric

Application/Data based routing/forwarding and services

Low Power Wide Area Architecture

LPWA Architectural Component Summary

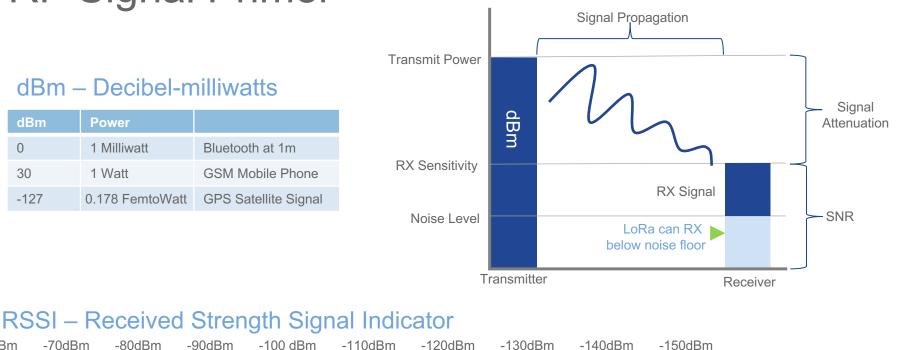
Component	Description	Function
LPWA Device	Smart devices (sensor, actuator) with LPWA RF	Support a given use cases/applications: (e.g. metering). Send or receive data to/from LPWA
LPWA AP	LPWA Access Point	LPWA RF interface to devices Packet Relay WAN backhaul: 3G, wifi, fiber, Security
LPWA NS	LPWA Network Server	Terminate MAC layer, Relay Packet to Application server Collect data from multiple AP Security: MAC layer, communication to AP and App Server Application based routing to AP server Collect data for network management, billing, optimization, Location Services
LPWA App Server (optional)	LPWA Application Server or Router (can be collocated with NS)	One per application Relay Packet network server and application Interface with end-to-end application Mapping from IPv6 to NS
WAN Aggregation	WAN aggregation	Secure Tunnel termination Firewall, IDS/IPS, Load-Balancing
AAA and Security	Authorization, Authentication, Accounting	Authenticate users, device, accounting, etc.
Network/Device Management	Network/Device Management	Device provisioning, activation End-to-end Network management

LoRa Physical Layer (PHY) An LPWA technology

Semtech Long Range (LoRa) PHY

Secure Sub-Ghz (ISM bands) bi-directional point-to-point wireless link Proprietary digital and chirp spread-spectrum modulation with FEC Data rates 300bps and 10kbps, 50 kbps via FSK, Packet size up to 250 Bytes Can trade data rate against range, up to +20dBm TX power, 168dB link budget 10 mA RX current, < 200 nA sleep current

Allow localization of end devices via a combination of time-of-flight and RSSI


Capacity can be incrementally increased by reducing cell size

Physical layer supports ISM bands (915/868/433/169)

Upper layer protocols (LoRaWAN) may not necessarily supports all the bands the PHY does

RF Signal Primer

SNR – Signal to Noise ratio

dBm – Decibel-milliwatts

-80dBm

Good

-70dBm

Excellent

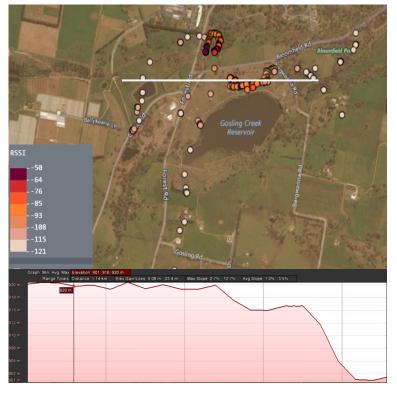
-60dBm

dBm	Power	
0	1 Milliwatt	Bluetooth at 1m
30	1 Watt	GSM Mobile Phone
-127	0.178 FemtoWatt	GPS Satellite Signal

-90dBm

Weak

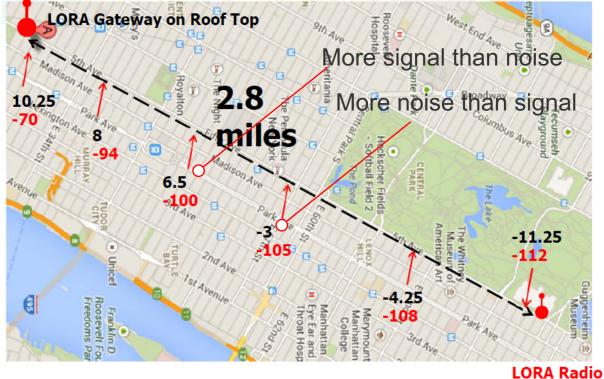
-100 dBm


Poor

None

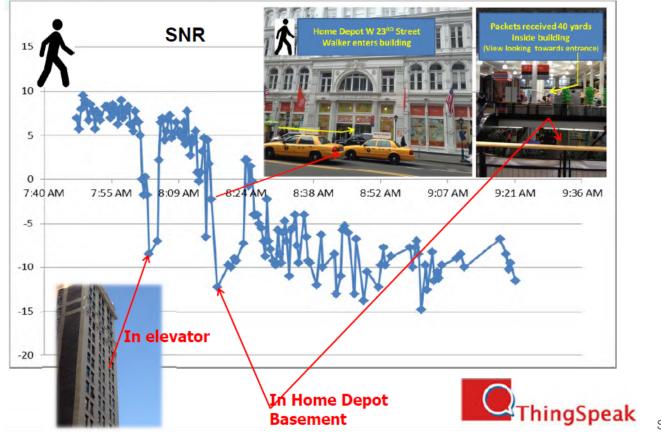

LoRa Sensitivity -148dBm

Rural Drive Test (Australian Countryside)


RSSI (5cm TX Antenna, +6dB gain RX antenna)

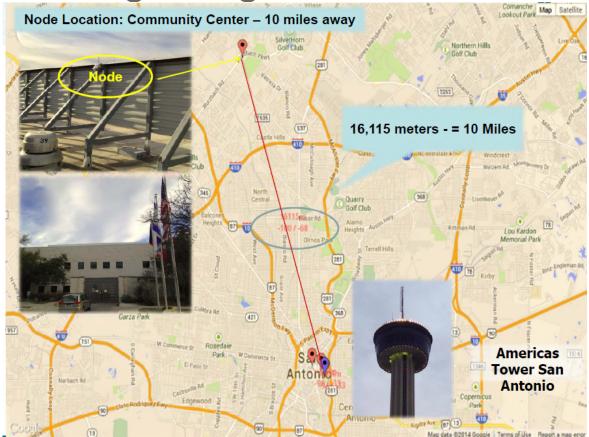
SNR

CBD Walk Test (5th Ave New York 4.5km)

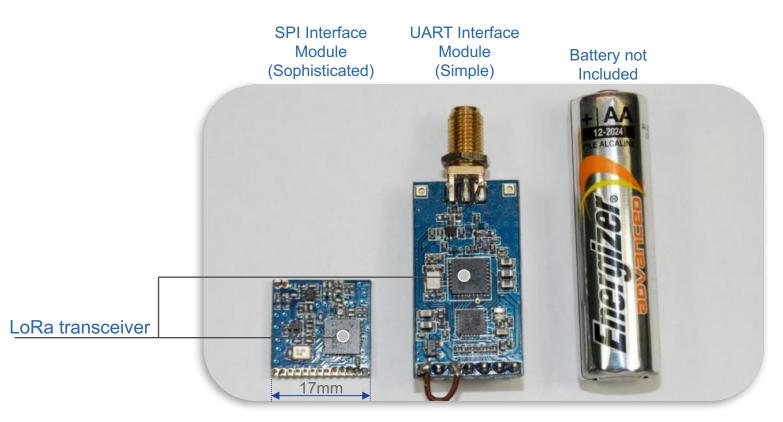


LORA Radio

Walker reported real-time location via text messages SNR and RSSI were measured on valid packets received by roof-top gateway.


Source: Semtech

Semtech Indoor Penetration test



Source: Semtech

Semtech Long Range Test

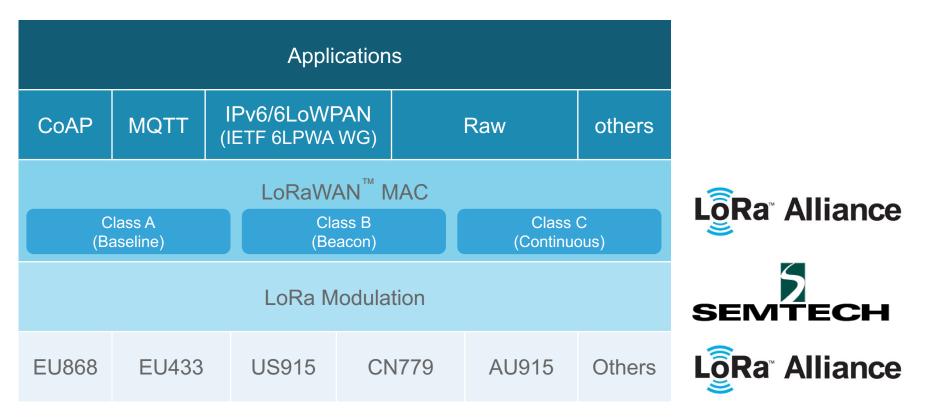
Source: Semtech

Semtech LoRa Chips (modules by Dorji)

LoRaWAN[™] (MAC)

LoRa Alliance (What is above the PHY?)

Non-profit association that believes the IoT era is now

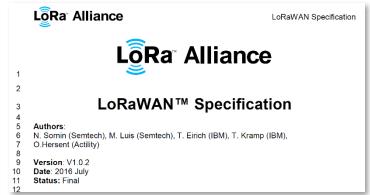

Mission: Standardize LPWA Networks with a first focus on LoRaWAN

Initial Members: IoT solution providers: Actility, Cisco, Eolane, IBM, Kerlink, IMST, MultiTech, Sagemcom, Semtech, and Microchip Technology. SP: Bouygues Telecom, KPN, SingTel, Proximus, Swisscom, and FastNet (part of Telkom South Africa)

LoRaWAN specification 1.0.2 is available from LoRA alliance

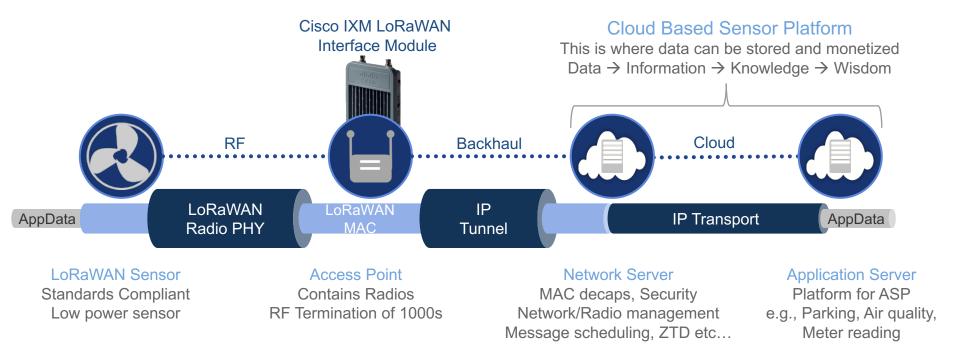
(http://lora-alliance.org)

LoRaWAN[™] Layered Architecture


LoRaWAN 1.0.2 Released Specification

Authored by Semtech, Actility, IBM

LoRaWAN Specification Document Identifiers definition, Security procedures Data and Control messages Class A, B & C procedures


Regional Parameters Document (Join Freq, Duty Cycles Dwell times...)

900Mhz, 800Mhz, 700Mhz and 433Mhz bands Europe, US, China, Australia, South Korea defined Australia: 915Mhz – 928Mhz (13MHz available) Special AS923Mhz plan (intersection of ISM frequencies) Brunei, Cambodia, Hong Kong, Indonesia, Japan, Laos, NZ, Singapore, Taiwan, Thailand, Vietnam

LoRaWAN End-to-End Architecture

LoRaWAN Description

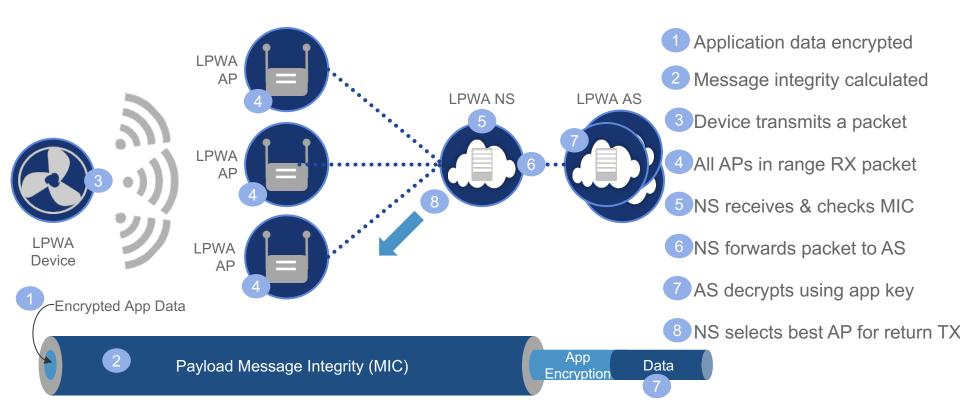
Star-of-stars topology

Gateways (AP) act as transparent bridge relaying messages between end-devices and a cloud based network server (NS)

Sensors use single-hop wireless communication To one or many gateways

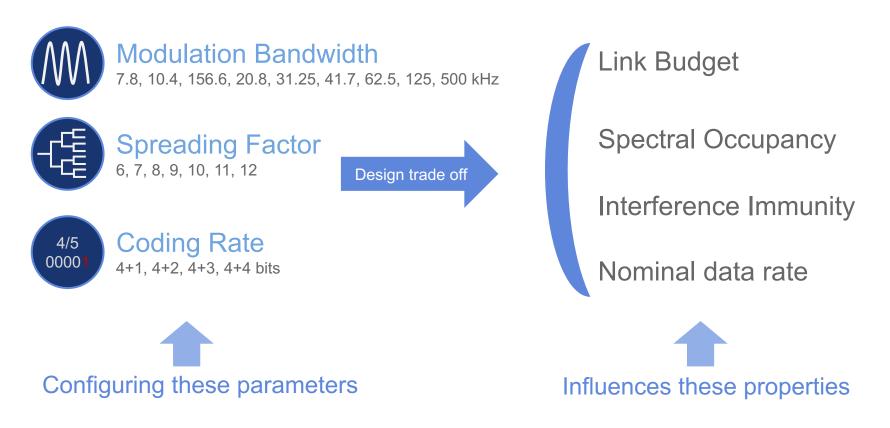
Communication between sensors and Gateway is spread Different frequency channels and data rates

NS manages the data rate and RF output for each sensor Using adaptive data rate (ADR) scheme


LoRaWAN is a Simple Network

Any device can transmit to any channel at any time

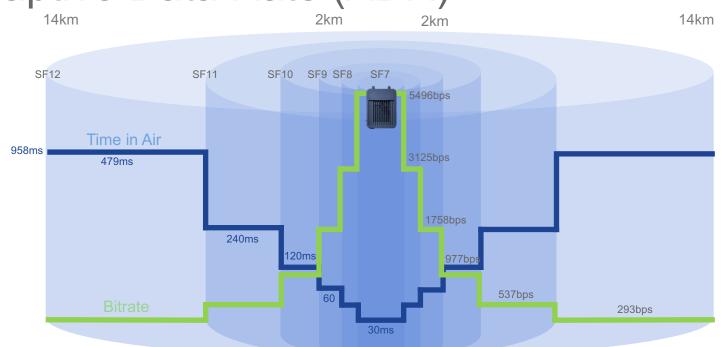
- No synchronization between devices required Easy to implement devices
- Mote changes channel randomly for each transmission Robust to interferers and collisions


Piggy-backing for gateway to node/mote communication Acknowledgement may be sent in the next data packet Predictable battery-life

Simple & Secure Cloud-Based Radio Access

42

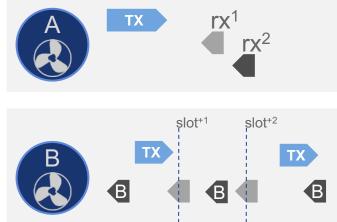
Three Important LoRa Parameters


Spreading Factor Example

Bandwidth: 125Khz, Coding Rate: 4/5, Payload: 4 bytes, Preamble: 12 symbols

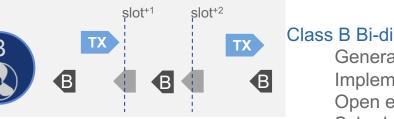
Spreading Factor		Chips/Symbo	Bit rate (bps)	Sensitivity (dBm)	Time on Air	
6		64	9375 bps	-118 dBm	17 ms	
7		128	5469 bps	-123 dBm	30 ms	Immunity Less
8		256	3125 bps	-126 dBm	60 ms	
9		512	1758 bps	-129 dBm	120 ms	to In
10		1024	977 bps	-132 dBm	240 ms	terfe Ma
11		2048	537 bps	-134 dBm	479 ms	Interference More
12		4096	293 bps	-137 dBm	958 ms	

Each spreading factor is orthogonal on the same transmission channel


Adaptive Data Rate (ADR)

ADR maximises battery life overall & network capacity

ADR manages the data rate and RF output for each device


LoRaWAN Device Classes

Class A Bi-directional (Baseline)

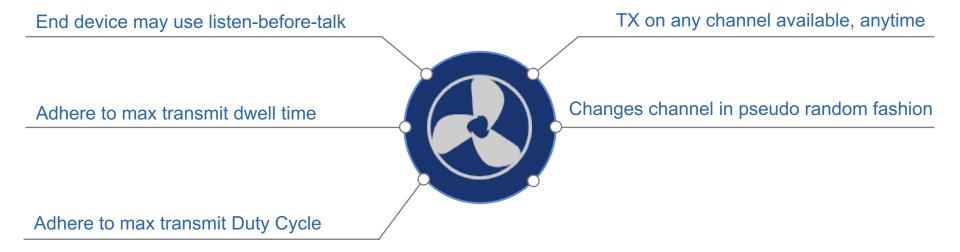

Generally battery powered

Device UL TX followed by 2 short DL RX windows (TX from NS) Class A must initiate a TX before listening on RX windows Very suitable for lowest powered devices

Class B Bi-directional with scheduled receive slots (Beacons)

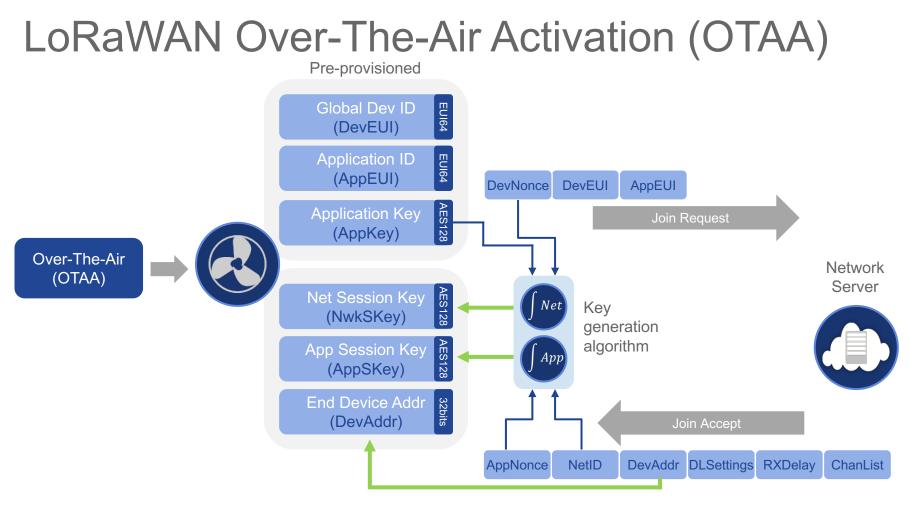
- Generally battery powered
- Implements Class A plus...
 - Open extra receive windows at scheduled times
- Scheduled time synchronised with Beacon frames from gateway

Class C Bi-directional with maximum receive slots (Continuous RX)

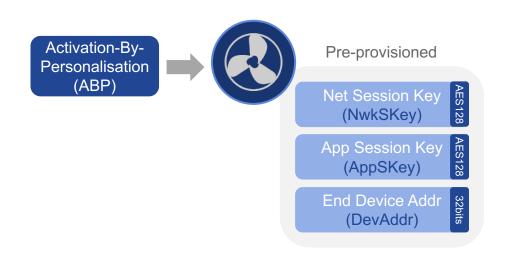

Mains powered

Implements Class A RX¹ window plus...

Continually listens on RX² channel, only closed when TX Uses most power, provides low latency


46

LoRaWAN Device Channel Access


Requirements are subject to local regulation Not all are necessarily required in a local region

47

LoRaWAN Activation-By-Personalisation (ABP)

ABP pre-provisions keys and device address Join procedure is bypassed

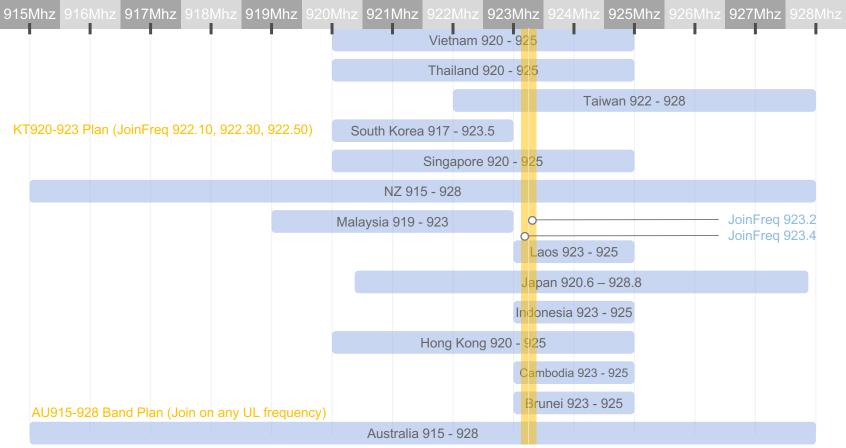
LoRaWAN Key Information Element (IE)

IE	Description
DevUI	A globally unique device ID in EUI64 format
DevAddr	A device ID of 32 bits that uniquely identifies the end device. Dev is composed of NetworkID (7 bits) and NetworkAddr (25 bits)
AppEUI	A globally unique application ID in EUI64 format that uniquely identifies the application provider (i.e., owner) of the end device
NwkSKey	A device-specific network session key used by both the network server and the end device to calculate and verify the Message Integrity Check (MIC) of all data messages to ensure data integrity. It is further used to encrypt and decrypt the payload field of MAC-only data messages.
AppSKey	A device-specific application session key used by both the network/app server and the end device to encrypt and decrypt the payload field of application- specific data messages. It may also be used to calculate and verify an application- level MIC to be optionally included in the payload of application-specific
АррКеу	The AppKey is an AES-128 root key specific to the end-device. Whenever an end-device joins a network via over-the-air activation, the AppKey is used to derive the session keys NwkSKey and AppSKey specific for that end-device to encrypt and verify network communication and application data.

LoRaWAN[™] Band Plan

AU915MHz - 928MHz Band Example

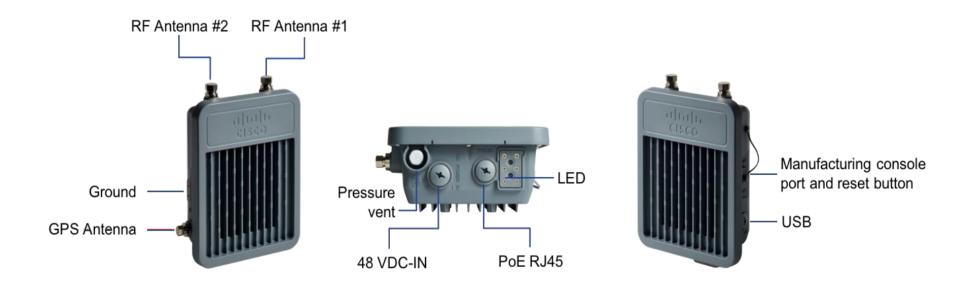
927


927.8₂

927

ĊЛ

Parameter	Condition	125kHz UL Data Rates		500kHz DL Data Rates				
TX Power 125kHz TX Power 500kHz	+30dBm (20dBm +10dBm gain) +26dBm (20dBm + 6dBm gain)	DR0 DR1	SF10 SF9	980bps 1760bps	DR8 DR9	SF12 SF11	980bps 1760bps	
Transmit	Any available channel DR0-DR4	DR2	SF8	3125bps	DR10	SF10	3900bps	
equency Hop	Min 20 channels on 125kHz	DR3	SF7	5470bps	DR11	SF9	7000bps	
well Time	400ms	500kł	lz UL D	ata Rates	DR12 DR13	SF8 SF7	12500bps 21900bps	
outy Cycle	<1% per hour (~32 packets)	DR4	SF8	12500bps				
915.9	125kHz Uplink BW	500kHz Uplink BW		500l Downli				
64	65 66	67		68		69	70	
			3	0	1	2	3 4	5 6
				923.3				
				ω	© 20	17 Cisco and/o	or its affiliates. All rights reser	ved. Cisco Public


AS923 Band Plan (Covers many Asian countries)

Cisco LoRaWAN Gateway

Cisco LoRaWAN Interface Module

Part of IoT eXtension Module Series (IXM)

55

LoRaWAN Gateway Deployment

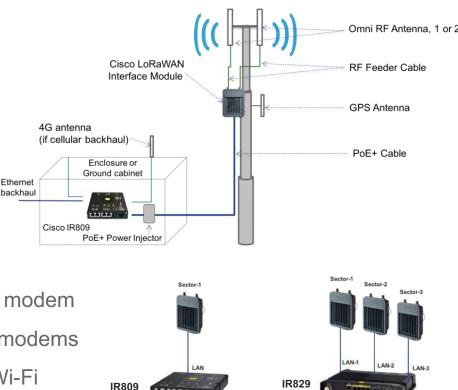
Connect to IR809/829 LAN via PoE cable

Carrier-grade LoRa gateway function

Semtech v2 reference design

Integrate with Actility (LoRa Network Server)

Support ZTD via Field Network Director


FCS - 16-chan for EU (868MHz), US (915Mhz)

Post FCS – Australia, Singapore

Omni LoRa Gateway – IR809 with single LoRa modem

3-sectors LoRa Gateway - IR829 with 3 LoRa modems

Multiple backhaul options – Ethernet, 4G and Wi-Fi

Omni LoRaWAN Gateway

LoRaWAN Applications

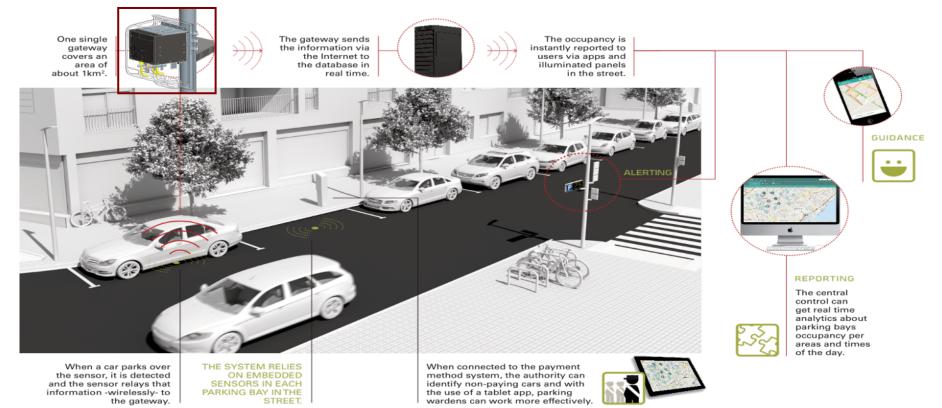
Multi-Purpose Tester: IMST LoRa Mote

LoRaMote is perfect for testing, demo, prototyping

LoRa transceiver and Cortex-M3 controller

GPS

Various sensors


proximity, magnetic, three axis accelerometer, pressure and temperature sensors

Schematics and source code are available on https://github.com/Lora-net

Smart Parking – Worldsensing Fastpark with LoRa

Cisco IR900 with Semtech LoRa Card

Asset Tracking : Abeeway

Tracker for people, pet, assets, cows...

Up to 1 year of battery autonomy

Small and handy size (starts at 6cm / 2,4in)

Leverage GPS for location and LoRa to communicate

Application: any asset, amusement park, ski resort, farm, children tracking, pet tracking, etc.

Waste Management

Sensor measuring the level of large containers Key to optimising waste collection

Long term (years) battery life, Long range transmission

Several vendors with waste collection sensors

Enevo, BH Technologies and Homerider

Water Metering: Home Rider Systems

HOMERIDER has developed integrated end points In partnership with manufacturers : Actaris/Itron, Sappel, Elster, Sensus

Comprehensive data collection

Up to 96 indexes per day

Maximum & minimum debit by 6 hour slot

Back flow: Number, Volume

28 day consumption histogram

Continuous flow by debit period

Alarms: leaks, back flow, battery, fraud.

Summary

LPWA is a hot topic amongst network vendors/startups globally

Provides a "low cost network for low cost devices"

Looks like a cellular network, operates like a WiFi network Simple access architecture, intelligence in the cloud

Many applicable use cases

Revenue models formulating

Subscription; Data Volume, Number of devices, Storage, Analytics?

Enables the Knowledge Provider

LoRa MAC Specification (Semtech, Actility, IBM) http://lora-alliance.org

- LoRa net Github:
 - https://github.com/Lora-net

ılıılı cısco